--- title: "ohsome" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{ohsome} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true") httr::set_config(httr::config(http_version = 1)) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "figures/", out.width = "100%", purl = NOT_CRAN, eval = NOT_CRAN ) ``` This ohsome R package grants access to the power of the [ohsome API](https://api.ohsome.org){target=blank} from R. ohsome lets you analyze the rich data source of the [OpenStreetMap](https://www.openstreetmap.org/){target=blank} (OSM) history. It aims to leverage the tools of the [OpenStreetMap History Database](https://github.com/GIScience/oshdb){target=blank} (OSHDB). With ohsome, you can ... - Get **aggregated statistics** on the evolution of OpenStreetMap elements and specify your own temporal, spatial and/or thematic filters. The data aggregation endpoint allows you to access functions, e.g., to calculate the area of buildings or the length of streets at any given timestamp. - Retrieve the **geometry** of the historical OpenStreetMap data, e.g., to visualize the evolution of certain OpenStreetMap elements over time. You can get the geometries for specific points in time or all changes within a timespan (full-history). ## Getting started Upon attaching the ohsome package, a metadata request is sent to the ohsome API. The package message provides some essential metadata information, such as the current temporal extent of the underlying OSHDB: ```{r library} library(ohsome) ``` The metadata is stored in `.ohsome_metadata`. You can print it to the console to get more details. You can create any ohsome API query using the generic `ohsome_query()` function. It takes the endpoint path and any query parameters as inputs. For information on all available endpoints with their parameters, consult the [ohsome API documentation](https://docs.ohsome.org/ohsome-api/stable/endpoints.html){target=blank} or print `ohsome_endpoints` to the console. However, this ohsome R package provides specific wrapper functions for queries to all available endpoints. ### OSM elements #### Aggregating OSM elements The [elements aggregation endpoints](https://docs.ohsome.org/ohsome-api/stable/endpoints.html#elements-aggregation){target=blank} of the ohsome API allow querying for the aggregated amount, length, area or perimeter of OpenStreetMap elements with given properties, within given boundaries and at given points in time. Let us create a query for the total amount of breweries on OSM in the region of Franconia. The first argument to `ohsome_elements_count()` is the `sf` object `franconia` that is included in the [mapview](https://r-spatial.github.io/mapview/){target=blank} package and contains boundary polygons of the `r nrow(mapview::franconia)` districts of the region: ```{r fix, include = FALSE} # avoid messages when handling franconia with old-style crs object franconia <- sf::st_set_crs(mapview::franconia, 4326) ``` ```{r elements_count} library(mapview) q <- ohsome_elements_count(franconia, filter = "craft=brewery") ``` The resulting `ohsome_query` object can be sent to the ohsome API with `ohsome_post()`. By default, `ohsome_post()` returns the parsed API response. In this case, this is a simple `data.frame` of only one row. ```{r post} ohsome_post(q, strict = FALSE) ``` As you can see, `ohsome_post()` issues a warning that the time parameter of the query is not defined. The `ohsome` API returns the number of elements at the latest available timestamp by default. ^[When the `strict` argument is set to TRUE (default), `ohsome_post` throws an error on a missing `time` parameter and does not send the request to the API at all.] Defining the `time` parameter unlocks the full power of ohsome API by giving access to the OSM history. The `time` parameter requires one or more [ISO-8601 conform timestring(s)](https://docs.ohsome.org/ohsome-api/stable/time.html){target=blank}. Here is how to create a query for the number of breweries at the first of each month between 2010 and 2020: ```{r time, eval = FALSE} ohsome_elements_count(franconia, filter = "craft=brewery", time = "2010/2020/P1M") ``` Alternatively, we can update the existing `ohsome_query` object `q` with the `set_time()` function, pipe ^[Instead of the new R native pipe `|>` you may choose to use `magrittr`'s `%>%`.] the modified query directly into `ohsome_post()` and make a quick visualization with `ggplot2`: ```{r pipe, dev = "svg"} library(ggplot2) q |> set_time("2010/2020/P1M") |> ohsome_post() |> ggplot(aes(x = timestamp, y = value)) + geom_line() ``` This is how to query the total number of breweries in all of Franconia. But what if we want to aggregate the amount per district? The ohsome API provides specific endpoints for different grouped calculations, such as aggregation grouped by bounding geometry. There are several ways to define a query for an aggregation grouped by boundary: The `set_endpoint`function is used to change or append the endpoint path of an API request. In this case, we could append `groupBy/boundary` to the existing query to the `elements/count` endpoint. The endpoint path can either be given as a single string (`/groupBy/boundary`) or as a character vector: `set_endpoint(q, c("groupBy", "boundary"), append = TRUE)` ^[The order of the elements in the character vector is critical!]. More comfortable, however, is the use of either the grouping argument with an elements aggregation function (e.g. `ohsome_elements_count(grouping = "boundary)`) or of the `set_grouping()` function to modify an existing query object: ```{r groupBy_boundary, message = FALSE} library(dplyr) franconia |> mutate(id = NAME_ASCI) |> ohsome_elements_count(filter = "craft=brewery", time = "2021-06-01") |> set_grouping("boundary") |> ohsome_post() ``` If you want your own identifiers for the geometries returned by ohsome, your input `sf` object needs a column explicitly named `id`. You can use `mutate()` or `rename()` from the [dplyr](https://dplyr.tidyverse.org){target=blank} package to create such a column as in the example below. By default, `ohsome_post()` returns an `sf` object whenever the ohsome API is capable of delivering GeoJSON data. This is the case for elements extraction queries as well as for aggregations grouped by boundaries. Thus, you can easily create a choropleth map from the query results. In addition, you can set the argument `return_value` to `density`. This will modify the endpoint path of the query so that ohsome returns the number of breweries per area instead of the absolute value: ```{r density} franconia |> mutate(id = NAME_ASCI) |> ohsome_elements_count(filter = "craft=brewery", return_value = "density") |> set_time("2021-06-01") |> set_grouping("boundary") |> ohsome_post() |> mapview(zcol = "value", layer.name = "Breweries per sqkm") ``` #### Extracting OSM elements The [elements extraction endpoints](https://docs.ohsome.org/ohsome-api/stable/endpoints.html#elements-extraction){target=blank} of the ohsome API allow obtaining geometries, bounding boxes or centroids of OSM elements with given properties, within given boundaries and at given points in time. Together with the elements, you can choose to query for their tags and/or their metadata such as the changeset ID, the time of the last edit or the version number. The following query extracts the geometries of buildings within 500 m of Heidelberg main station with their tags. The response is used to visualize the buildings and the values of their `building:levels` tag (if available): ```{r building_levels, warning = FALSE} hd_station_500m <- ohsome_boundary("8.67542,49.40347,500") ohsome_elements_geometry( boundary = hd_station_500m, filter = "building=* and type:way", time = "2021-12-01", properties = "tags", clipGeometry = FALSE ) |> ohsome_post() |> transmute(level = factor(`building:levels`)) |> mapview(zcol = "level", lwd = 0, layer.name = "Building level") ``` Similarly, you can use `ohsome_elements_centroid()` to extract centroids of OSM elements and `ohsome_elements_bbox()` for their bounding boxes. Note that OSM node elements (with point geometries) are omitted from the results if querying for bounding boxes. #### Extracting the full history of OSM elements While the elements extraction endpoints provide geometries and properties of OSM elements at specific timestamps, results of queries to the [full history endpoints](https://docs.ohsome.org/ohsome-api/v1/endpoints.html#elements-full-history-extraction){target=blank} will include all changes to matching OSM features with corresponding `validFrom` and `validTo` timestamps. Here, we request the full history of OSM buildings within 500 m of Heidelberg main station, filter for features that still exist and visualize all building features with their year of creation: ```{r buildings} hd_station_1km <- ohsome_boundary("8.67542,49.40347,1000") ohsome_elements_geometry( boundary = hd_station_1km, filter = "building=* and type:way", time = "2021-12-01", properties = "tags", clipGeometry = FALSE ) |> ohsome_post() |> transmute(level = factor(`building:levels`)) |> mapview(zcol = "level", lwd = 0, layer.name = "Building level") ``` You may find using `clean_names()` from the [janitor](https://github.com/sfirke/janitor){target=blank} package helpful in order to remove special characters from column names in the parsed ohsome API response -- just as in the example above. ### OSM contributions #### Aggregating OSM contributions With queries to the ohsome API's [contributions aggregation endpoints](https://docs.ohsome.org/ohsome-api/v1/endpoints.html#contributions-aggregation){target=blank}, you can get counts of the contributions provided by users to OSM. The following code requests the number of deletions of man-made objects at the location of the hypothetical [Null Island](https://en.wikipedia.org/wiki/Null_Island){target=blank} per year between 2010 and 2020: ```{r contribution_count} ohsome_contributions_count( boundary = "0,0,10", filter = "man_made=*", time = "2010/2020/P1Y", contributionType = "deletion" ) |> ohsome_post() ``` The `contributionType` parameter is used to filter for specific types of contributions (in this case: deletions). If it is not set, any contribution is counted. Note that the resulting values apply to time intervals defined by a `fromTimestamp` and a `toTimestamp`. #### Extracting OSM contributions The [contributions extraction](https://docs.ohsome.org/ohsome-api/v1/endpoints.html#contributions-extraction){target=blank} endpoints of the ohsome API can be used to extract feature geometries of contributions. In the following example, we extract the centroids of all amenities in the Berlin city district of Neukölln that have had contributions in March 2020. Consequently, we filter for features that have had tags changed and visualize their locations: ```{r contribution_extraction} nominatimlite::geo_lite_sf("Berlin Neukoelln", points_only = FALSE) |> ohsome_contributions_centroid() |> set_filter("amenity=*") |> set_time("2020-03,2020-04") |> set_properties("contributionTypes") |> ohsome_post() |> filter(`@tagChange`) |> mapview(layer.name = "Amenities with Tag Changes") ``` ### OSM users You can get statistics on the number of users editing specific features through the [users aggregation](https://docs.ohsome.org/ohsome-api/v1/endpoints.html#users-aggregation){target=blank} endpoints of the ohsome API. Here, we show the number of users editing buildings before, during and after the Nepal earthquake 2015: ```{r nepal} ohsome_users_count( boundary = "82.3055,6.7576,87.4663,28.7025", filter = "building=* and geometry:polygon", time = "2015-03-01/2015-08-01/P1M" ) |> ohsome_post() ``` ### Bounding geometries The ohsome API requires bounding geometries either as bounding polygons (`bpolys`), bounding boxes (`bboxes`) or bounding circles (`bcircles`) parameters to the query in a textual form (see [ohsome API documentation](https://docs.ohsome.org/ohsome-api/stable/boundaries.html){target=blank}). The ohsome R package uses the generic function `ohsome_boundary()` under the hood to make your life easier. It accepts a wider range of input geometry formats, while guessing the right type of bounding geometry. As seen above, `sf` objects can be passed into the `boundary` argument of `ohsome_query()` and any of its wrapper functions. You can also update queries with `set_boundary()`. The `sf` object will be converted into GeoJSON and passed into the `bpolys` parameter of the query. If you wish to aggregate or extract OSM elements on administrative boundaries in the `sf` format, you might want to check out packages such as [rnaturalearth](https://github.com/ropensci/rnaturalearth){target=blank}, [geodata](https://github.com/rspatial/geodata){target=blank}, [raster](https://github.com/rspatial/raster){target=blank} (in particular its `getData()` function), [rgeoboundaries](https://gitlab.com/dickoa/rgeoboundaries){target=blank} or [nominatimlite](https://github.com/dieghernan/nominatimlite){target=blank} for the acquisition of boundary data that can be used with `ohsome_boundary()`. There are also the following methods of `ohsome_boundary()` for other classes of input geometry objects: 1. `bbox` objects created with `st_bbox` are converted into a textual `bboxes` parameter to the query: ```{r bbox} q <- ohsome_query("users/count") |> set_boundary(sf::st_bbox(franconia)) q$body$bboxes ``` 2. `matrix` objects created with `sp::bbox()`, `raster::bbox()` or `terra::bbox()` are also converted into a textual `bboxes` parameter. This even applies for matrices created with `osmdata::getbb()` and `tmaptools::bb()`, so that you can comfortably acquire bounding boxes from the Nominatim API: ```{r getbb} osmdata::getbb("Kigali") |> ohsome_elements_length(time = "2018/2018-12/P1M", filter = "route=bus") |> ohsome_post() ``` 3. You can pass any `character` object with text in the [format allowed by the ohsome API](https://docs.ohsome.org/ohsome-api/stable/boundaries.html){target=blank} to `ohsome_boundary()` -- even GeoJSON FeatureCollections. It will automatically detect whether you have passed the definition of `bpolys`, `bboxes` or `bcircles`. It is possible to use `character` vectors where each element represents one geometry: ```{r circles} c("Circle 1:8.6528,49.3683,1000", "Circle 2:8.7294,49.4376,1000") |> ohsome_elements_count(filter = "amenity=*", grouping = "boundary", time = 2021) |> ohsome_post() ``` While `sf` and `bbox` objects will be automatically transformed to WGS 84 if in a different coordinate reference system, coordinates in `character` and `matrix` objects always need to be provided as WGS 84. ### Modifying queries As seen above, existing `ohsome_query` objects can be modified by `set_endpoint()`, `set_grouping()`, `set_boundary()` or `set_time()`. The latter and other functions such as `set_filter()` are just wrappers around the more generic `set_parameters()`. This can be used to modify the parameters of a query in any possible way: ```{r set_parameters} q <- ohsome_elements_count("8.5992,49.3567,8.7499,49.4371") q |> set_endpoint("ratio", append = TRUE) |> set_parameters( filter = "building=*", filter2 = "building=* and building:levels=*", time = "2010/2020/P2Y" ) |> ohsome_post() ``` ### Grouping [Grouping endpoints](https://docs.ohsome.org/ohsome-api/v1/group-by.html){target=blank} are available for aggregation resources and can be used to compute the aggregated results grouped by: - boundary, - key, - tag, and - type. In many cases, a grouping by `boundary` can be combined with a grouping by `tag`. Some of the grouping endpoints require additional query parameters, e.g. `tag` groupings require a `groupByKey` parameter. Not all grouping endpoints are available for all aggregation resources -- please consult the [ohsome API documentation](https://docs.ohsome.org/ohsome-api/v1/group-by.html){target=blank} for details. You can set the `grouping` argument to any aggregation endpoint wrapper function (e.g. `ohsome_elements_count(grouping = c("boundary", "tag"))`) or use `set_grouping()` to modify existing query objects. ### Density and ratio requests Many [aggregation resources](https://docs.ohsome.org/ohsome-api/v1/endpoints.html){target=blank} have endpoints for requesting density (i.e. count, length, perimeter or area of features **per area**) or ratios (of OSM elements satisfying a `filter2` to elements satisfying a `filter`) instead of or in addition to absolute values. You can request density or ratio values by setting the `return_value` argument to aggregation endpoint wrapper functions (e.g. `ohsome_elements_count(return_value = "density")`). Mind that ratio endpoints require an additional `filter2` query parameter. Please consult the [ohsome API documentation](https://docs.ohsome.org/ohsome-api/v1/endpoints.html){target=blank} or print `names(ohsome_endpoints)` to the console in order to check for the availability of specific density and ratio endpoints. ### Dealing with complex API responses The ohsome API allows grouping aggregate values for various timestamps by boundary and tag at the same time. The parsed content of the response can be rather complex. In the following case, building feature counts for the districts of Franconia at two different timestamps are requested -- additionally grouped by the building:levels tag. To avoid lots of redundant geometries, comma-separated values (instead of GeoJSON) are explicitly requested as the response format: ```{r groupby_boundary_groupby_tag, message = FALSE} building_levels <- franconia |> mutate(id = NUTS_ID) |> ohsome_elements_count(grouping = c("boundary", "tag"), format = "csv") |> set_filter("building=* and geometry:polygon") |> set_time("2015/2020") |> set_groupByKey("building:levels") |> ohsome_post() dim(building_levels) ``` The query results in a confusing data.frame. This happens because there is a building count column for each combination of boundary polygon and number of levels, while the two requested timestamps are in the rows. Fortunately, there is the [tidyr](https://tidyr.tidyverse.org){target=blank} package to do its magic and pivot this table into a long format with one value per row: ```{r tidy} library(tidyr) building_levels |> pivot_longer(-timestamp, names_to = c("id", "levels"), names_sep = "_") ``` ## How to cite this package In order to cite this package in publications, please use the citation information provided through `citation("ohsome")`. -----